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Abstract 

This study explores the application of GARCH and GJR-GARCH models 
in measuring portfolio return and risk using high-frequency daily return 
data from the S&P 500 and DAX indices over the period 2000–2020. The 
research aims to construct a parsimonious and practical volatility 
forecasting framework by integrating both symmetric and asymmetric 
shock models, as well as parametric and non-parametric approaches. The 
methodology follows foundational works by Engle (1982), Bollerslev 
(1986), and Glosten et al. (1993), and incorporates Value-at-Risk (VaR) to 
assess potential portfolio losses. Empirical results reveal that actual return 
distributions exhibit fat tails and skewness, invalidating the normality 
assumption and necessitating the use of Student’s t-distributions for 
better accuracy. The GJR-GARCH model proves superior in capturing 
asymmetric shock effects, as evidenced by higher predictive performance 
and alignment with observed volatility dynamics, particularly during 
financial turmoil such as the 2008 crisis. Furthermore, ARMA-enhanced 
GJR-GARCH models yield better fitting results, especially in forecasting 
conditional mean and variance. The findings indicate that DAX required 
higher risk compensation in multiple periods compared to S&P 500, 
which showed concentrated volatility during the crisis period only. The 
study highlights the practical implication of selecting appropriate 
volatility models for dynamic risk management and suggests the 
inclusion of autoregressive components to enhance return prediction 
accuracy. Ultimately, this research contributes to the advancement of 
financial econometric modeling by demonstrating the efficacy of 
advanced GARCH frameworks in real-world portfolio risk estimation. 

 

Keywords: Portfolio Return, GARCH Model, GJR-GARCH, 

Volatility Forecasting, Value-at-Risk (VaR), Financial Risk 

Management 

 

Introduction 

Portfolio management is a dynamic field in financial risk management with its diverse 
behaviour. Its historical development goes back to early 1950s (Markowitz, 1952). 
Financial asset return volatilities and correlations are key components of measuring the 
risks of a portfolio. According to Andersen, T. G., Bollerslev, T., Christoffersen, P. F., & 
Diebold, F. X. (2013) volatility has persistent dynamics; it changes over time and even 
across financial assets and asset classes. 

Here, we employ a practical method suggested by Andersen, T. G., Bollerslev, T., 
Christoffersen, P. F., & Diebold, F. X. (2013) and incorporate previous methodologies 
developed by Bollerslev (1986) and GJR-GARCH Glosten et al. (1993) to measure 
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associated risks of S&P 500 and DAX. Our primary objective is to arouse affinity 
between practice and theory by drawing a better parsimonious model. 

We stress the GARCH models with different scenarios in order to highlight model 
features. Our first concern is modelling level; we use portfolio level data (aggregated). 
Andersen, T. G., Bollerslev, T., Christoffersen, P. F., & Diebold, F. X. (2013) covers the 
topic about the distinction of aggregated and asset level data and clearly indicate that 
in general risk measurement requires a portfolio data. 

Secondly, we consider about the frequency of the observations, we employ high 
frequency data in order to achieve a real volatility prediction. We also deal with 
parametric and non-parametric volatility estimation, but mostly we emphasize non-
parametric methods with different distribution assumptions. 

Our third concern is to examine the transmission of dynamic return and volatility by 
using one of univariate GARCH models. Various practitioners have investigated the 
linkage of return and volatility, our model is optimized based on Bollerslev (1986), 
Bollerslev, Engle and Wooldridge (1988) and GJR-GARCH Glosten et al. (1993). 
Moreover, we also consider simultaneous shock transmission of return series and 
volatilities by following Arouri, Lahiani and Nguyen (2015) and GJR-GARCH Glosten 
et al. (1993). 

Finally we follow Andersen, T. G., Bollerslev, T., Christoffersen, P. F., & Diebold, F. X 
(2013) GARCH model incorporate with value at risk (VaR) quantile risk measurer in 
order to estimate the level of portfolio loss for our empirical analysis. 

We practically focus on building a parsimonious model for a portfolio level data. 
Information dependencies are key features when optimizing portfolio strategy, it is 
essential because of financial asset’s time varying characteristics. Thus, we consider 
symmetric and asymmetric shocks to volatility estimation and different distribution 
assumptions of return series as employed in Andersen, T. G., Bollerslev, T., 
Christoffersen, P. F., & Diebold, F. X (2013). We explore more advanced concepts during 
the estimation of portfolio return loss such as complex constraints, methods for 
estimating moments and visualisation for better understanding the optimisation 
problems. Thus, to solve a portfolio optimization in the mean and variance framework. 

Data overview  

Our sample data frame covers the periods between 01 January 2000 and 31 December 
2020. We collected daily time series of United States (US) and Germany stock market 
portfolio indices, namely S&P 500 and DAX over the mentioned period. Obtained data 
are downloaded from Yahoo Finance, original source for S&P 500 is NYSE or NASDAQ 
and for DAX is Frankfurt Stock Exchange databases. Daily price series of the data is 
collected in order to have a high frequency of data for adequately observing the 
behaviour and level of volatility during the observation period. Denominated currency 
for price series are local currencies of the countries, namely USD and EURO. Daily 
returns are calculated in a simple way, respectively for each index. Table 1 provides 
statistical and stochastic properties of the employed time series returns data. 

 

Table 1. Summary statistics 

Statistics  S&P 500 DAX 

Observations 4779 4794 

Mean 0.0002 0.0002 

Max. 0.1158 0.1140 

Min. -0.0903 -0.0849 

Standard deviation 0.0121 0.0148 

Skew. -0.0246 0.0920 

Kurt. 11.6834 7.8051 

Jarque-Bera 15015*** 4646*** 

 Note: *p < 0.1;    **p < 0.05;    ***p < 0.01. 
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Table 1 reports basic selected statistics of employed return data for S&P 500 and DAX. 
As shown above average daily return series are close to zero, the other statistic 
properties such as maximum and minimum quantify the low and high value of the data 
over the sample period respectively for S&P 500 and DAX. Standard deviation gives a 
good indication about average daily risk of returns. Skewness and Kurtosis coefficients 
are important in order to measure asymmetry and shape of the return series. They will 
help us to build more holistic view of risk. For instance, skewness can measure how 
much a return distribution leans to the left or right. Negative skew is a right-leaning 
curve while a positive skew is a left-leaning curve. Kurtosis is a measure of thickness of 
the tails of a return distribution. With negatively skewed coefficients (skewness is less 
than 1) and kurtosis higher than three for both indices, the S&P 500 and DAX returns 
show asymmetric and fatter tails data. Which means extreme negative and positive 
returns are more common for these datasets. 

Methodology 

Econometric set-up and methodology 

We start by defining what the GRACH models are. GARCH stands for Generalized 
Autoregressive Conditional Heteroscedasticity. It is a popular approach to model 
volatility in financial risk management, portfolio management and investment world.  

Before GARCH, another model called Auto Regressive Conditional Heteroscedasticity 
(ARCH) models existed. The model process introduces conditional heteroscedasticity 
wherein data shows time dependent varying characteristic and is unpredictable. 
Moreover, variance, in the model, is not constant and remains conditional on the past 
with auto regressive behaviour (Engel, 1982).  

The GARCH analysis starts with times series of returns, each return is observed at a 
regular frequency, like daily, weekly and so on. In our analysis, we use daily frequency 
of return series for both S&P 500 and DAX. Assume at t – 1, we want to predict the next 
return R_t. For this, we can use the information set consisting of all the past and current 
returns available as of time t – 1. Thus, to compute the expected returns we follow Engle 
(1982), Bollerslev (1986) and Andersen, T. G., Bollerslev, T., Christoffersen, P. F., & 
Diebold, F. X (2013). 

Expected return: 

                         μ_t = ∑ [R_t ∣ I (t − 1)]                             (1) 

Where: 
 𝐼 𝑡−1 – is the information set available at time of prediction (t – 1), 

𝜇𝑡 – is mean prediction return. 

The prediction is of course not expected to be perfect; there is a prediction error. We 

follow Engle (1982) to calculate the prediction error as: 

                           𝑒𝑡 =  𝑅𝑡 − 𝜇𝑡 ,                          (2) 

Similarly, we can predict volatility of time t as expected variance based on the 

information at t – 1. Thus, we follow Engle (1982) and Bollerslev (1986) to calculate 

expected volatility. 

                       𝜎𝑡
2 = var [𝑅𝑡 ∣ I(t − 1)]                        (3) 

Volatility is not directly observable, but it is related to prediction error. As discussed 

earlier, if prediction works well, the residual should equal to volatility multiplied by a 

random variable from a white noise process. The equation below indicates correlation 

of volatility to the residuals (Bollerslev, 1986). 

𝑒𝑡 = 𝜎𝑡∗ ζ(white noise)                    (4) 
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To transform the above expectations into practice, we define ARCH equation by following 

Engle (1982). The equation is designed to show how future variance is more affected by 

recent events rather than distant ones. By giving more weight to the most recent 

observation, ARCH equation achieves a higher forecast accuracy. Thus, ARCH 

components are the predicted variance equals a constant omega plus a weighted sum of 

the p most recent observed squared prediction errors (Engel, 1982). 

As mentioned earlier, GARCH models are invented based on ARCH. GARCH is a famous 

model which is more commonly used by researchers. 

𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞): 𝜎𝑡
2 =  𝜔 + ∑ 𝑎𝑖𝑒𝑡−𝑖

2𝑝
𝑖=1 +  ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑞
𝑗=1    (5) 

                 𝐺𝐴𝑅𝐶𝐻(1,1): 𝜎𝑡
2 =  𝜔 +  𝛼𝑒𝑡−1

2 +  𝛽𝜎𝑡−1
2        (6) 

The GARCH (p,q) model equation 

Besides p-period lags of residuals, GARCH models add q-period lags of variance for 

predicting the current variance. Hence the basic GARCH(1,1) model states, the variance 

of time t is a sum of three components: a constant omega, alpha times residuals squared 

of time t – 1, and beta times variance of time t – 1. Figure 1 below illustrates the 

difference of variance prediction between GARCH and ARCH. 

 

 

Figure 1. Difference of ARCH and GARCH volatility. 

 

As shown in Figure 1 above, GARCH model generates higher volatility due to 

additional moving average component of beta multiplied by lag 1 variance. In addition, 

ARCH shows a short run persistence of the past shock while GARCH effects to the long 

run persistence of past volatility. 

GARCH models can be understood intuitively. First, the model is autoregressive in 

nature. It estimates volatility at time t on the bases of information known as of t – 1. 

Second, it estimates volatility as a weighted average of pass information. For making a 

GARCH (1,1) process realistic, we further adjust two types of parameter restrictions 

based on Andersen, T. G., Bollerslev, T., Christoffersen, P. F., & Diebold, F. X (2013). 

Results and Discussion 

In this part, we discuss obtained results of our analysis from GARCH (1,1) model. The 

model performance and some further parameter adjustments will also be presented. In 

addition, we compare gained results with another competing GJR-GRACH (1,1) model 

to have a stronger analysis.  

In order to define a good model, we need to have assumptions that fits most 

representative of the actual data since volatility is not directly observable quantity and 

is estimated through price return fluctuations. From equation (7) returns equal: 
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                             𝑅𝑡 = 𝜇𝑡 + 𝑒𝑡                                  (7) 

As shown in equation 7, returns are equal to mean return and residual (prediction error). 

Where the residuals are stochastic return shocks dependent on the size of the volatility 

as shown in equation (3). Under the standard GARCH (1,1) model, prediction error is 

normally distributed with a zero mean and its correlated volatility. However, normal 

distribution is not realistic when analysis time series stock return data. To account this, 

GARCH models require making distribution assumption of both residuals and mean 

return. In equation 9, prediction error is normally distributed and dependent on the size 

of volatility. This implies that if prediction error in equation 7 is divided by the model-

estimated volatility, we obtain standardized returns. In other words, model residuals 

divided by conditional volatility. Based on Andersen, Bollerslev, Diebold and Labys 

(2000) we compute standardized returns with underlying formula: 

                                      𝑍𝑡 =
𝑅𝑡−𝜇𝑡

𝜎𝑡
                                                 (8) 

To test this approach, we use histogram of actual returns and standardized returns in 

order to review their distribution curve. Below Figure 5 illustrates the difference in actual 

and standardized returns in histograms. By comparing the density function of the 

normal distribution in histogram of standardized returns 2 and 4 we observe non-normal 

distribution of returns for both DAX and S&P 500. In grey and black distribution of 

return series, the blue line is the normal distribution, while in red the actual ones. 

Compared to the normal the actual return distribution is much more peaked around 

zero. 

In the tails, we see that extreme observations occur and that normal distribution cannot 

fit them, as it assigns them a zero density. Therefore, actual return distribution has fat 

tails and that happens frequently in the price return data. 

 
Figure 2. Difference of actual and standardized returns in histogram 

 

The standard GARCH model uses the squared prediction error e_t^2 to forecast the 

return variance using one single equation. In other words, standard GARCH model 

assumes symmetric shocks on volatility. Positive and negative changes in price returns 

would have the same impact on volatility. Therefore, it does not distinguish between 

positive and negative prediction errors. 

However, in reality the size of the prediction error matters. To capture positive and 

negative changes we need to model asymmetric shocks on volatility. For instance, when 

things are good, price goes up slowly and steadily; when things turn bad asymmetric 

DAX Return Series (1)

Returns

F
re

q
u
e
n
c
y

-0.05 0.00 0.05 0.10

0
2
0
0

4
0
0

DAX Return Series (2)

Returns

D
e
n
s
it
y

-6 -4 -2 0 2 4

0
.0

0
.4

0
.8

S&P 500 Return Series (3)

Returns

F
re

q
u
e
n
c
y

-0.05 0.00 0.05 0.10

0
1
0
0

2
5
0

S&P 500 Return Series (4)

Returns

D
e
n
s
it
y

-6 -4 -2 0 2 4

0
.0

0
.4

0
.8



 

  

Volume: 2 | Number: 1 (2025) October   11  Journal of Theoretical and Applied Econometrics 

shocks arise like during the financial crisis, everyone panics and therefore prices take a 

sharp plunge. GJR-GARCH is developed to address the asymmetric shock effect on 

volatility. We follow GJR-GARCH model by Glosten et al. (1993) as specified below to 

indicate the size of the prediction error: 

       𝜎𝑡
2 =  {

𝜔 + (𝛼 + 𝛾)𝑒𝑡−1
2 + 𝛽𝜎𝑡−1

2

𝜔 + 𝛼𝑒𝑡−1
2 + 𝛽𝜎𝑡−1

2 } 
: 𝑒𝑡−1 ≤ 0
: 𝑒𝑡−1 > 0

            (9) 

With: 𝛾 ≥ 0 

GJR-GARCH equation is very similar to the standard GARCH model, except it adds a 

conditional parameter. When shocks are negative to return, the conditional parameter 

will be included in the equation to account the additional impact. This means that we 

need to apply a larger multiplier on the squared prediction error. Formally, using as a 

coefficient α+γ instead of α with the additional γ parameter being positive. These two 

abovementioned equations together define the GJR-GARCH model. We then use this 

model to analyse the GARCH dynamics for the daily returns of each index. 

 

Table 2. Estimation coefficients of standard GARCH and GJR – GARCH 

Parameters 

S&P 500 DAX 

standard 

GARCH 

GJR-

GARCH 

standard 

GARCH 

GJR- 

GARCH 

𝜇 
0.0005*** 

(0.0001) 

0.0002* 

(0.0001) 

0.0006*** 

(0.0001) 

0.0002* 

(0.0001) 

𝜔 
0.0000* 

(0.0000) 

0.0000* 

(0.0000) 

0.0000 

(0.0000) 

0.0000* 

(0.0000) 

𝛼 
0.1035*** 

(0.0150) 

0.0000 

(0.0096) 

0.0848*** 

(0.0160) 

0.0000 

(0.0082) 

𝛽 
0.8943*** 

(0.0137) 

0.8913*** 

(0.0144) 

0.9096*** 

(0.0163) 

0.9124*** 

(0.0139) 

𝛾 --- 
0.0199*** 

(0.0263) 
--- 

0.0156*** 

(0.0227) 

Skew. 
0.9214*** 

(0.0173) 

0.8881*** 

(0.0173) 

0.9316*** 

(0.0175) 

0.9100*** 

(0.0179) 

Shape 
6.8145*** 

(0.5107) 

7.9569*** 

(0.9686) 

9.7260*** 

(0.0237) 

11.5554*** 

(1.8674) 

Observations 4779 4779 4794 4794 

Log 

Likelihood 
15579 15675.82 14401.83 14488.24 

Note:     *p < 0.1;  **p < 0.05;  ***p < 0.001 

 

Based on Engle and VK. NG (1993) we generated new impact curve plots for each index 

in order to visualize the impact of news on volatility estimation. As shown in Figure 5, 

the impact of squared error on the variance prediction after a negative error is 0.0199 and 

0.0156 respectively for S&P 500 and DAX, which is the sum of alpha and gamma. 

Comparing to the value of the positive error (see Appendix B for the calculation), we see 

that the response of the variance after a negative surprise in returns have much higher 

asymmetry for each index as shown in the news impact curve plots (Figure 4). Engle and 

VK. NG (1993) found that GJR-GARCH is the best model to measure the effect of new 

information on volatility estimation. 
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Figure 3. News impact curve for S&P 500 and DAX 

 

 Moreover, Figure 4 demonstrates the compression of standard GARCH and GJR-

GARCH volatilities respectively for S&P 500 and DAX. In grey, the distribution of 

absolute value of actual return series, and red and blue lines represent the volatility 

dynamics, namely red is GJR-GARCH while blue is standard GARCH. 

 

 
Figure 4. Volatilities of standard GARCH and GJR-GARCH. 

 

As we observe in the above graphs, GJR-GARCH generated volatility with skewed 

student t distribution is more in line with the movement of actual return series 

compared to the normal distribution.  

Estimated risk and reward coefficients allow us to plot the series of predicted returns 

over the sample period, in order to visualize the periods which investors require higher 

returns. Below in Figure 8, we note the spike is around 2008 during the financial crises 

for both indices. For DAX, investors required higher returns in order to compensate 

higher risk between the period 2000 and 2003.  

Moreover, to estimate the exact level of return and risk we further need to advance the 

model. Based on Ferenstein and Gasowski (2004) we use the Auto Regression (AR) 

approach where the model exploits the correlation between today’s return and 

tomorrow’s return. 

 

 
Figure 5. Predicted return series for S&P 500 and DAX. 
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Table 3. Estimation coefficients of AR(1) GJR-GARCH and ARMA(1,1) GJR - 

GARCH for S&P 500 and DAX. 

Parameters 

S&P 500  DAX 

AR(1) GJR-

GARCH  

GJR-GARCH 

ARMA(1,1) 

Parameters 
AR(1) GJR-

GARCH 

GJR - 

GARCH 

ARMA(1,1) 

 

0.0002** 

(0.0001) 

0.0002** 

(0.0000)  

0.0003* 

(0.0001) 

0.0002** 

(0.0001) 

AR(1) 
-0.0657*** 

(0.0144) 

0.5308*** 

(0.1554) 
AR(1) 

-0.0181 

(0.0146) 

0.6965*** 

(0.1216) 

MA(1) --- 
-0.5982*** 

(0.1485) 
MA(1) --- 

-0.7125*** 

(0.1189) 

 

0.0000* 

(0.0000) 

0.0000* 

(0.0000)  

0.0000* 

(0.0000) 

0.0000* 

(0.0000) 

 

0.0000 

(0.0090) 

0.0000 

(0.0086)  

0.0000 

(0.0081) 

0.0000 

(0.0080) 

 

0.8952*** 

(0.0136) 

0.9006*** 

(0.0131)  

0.9132*** 

(0.0141) 

0.9145*** 

(0.0144) 

 

0.1893*** 

(0.0248) 

0.1753*** 

(0.0260)  

0.1537*** 

(0.0230) 

0.1501*** 

(0.0243) 

Skewness 
0.8804*** 

(0.0173) 

0.8733*** 

(0.0177) 
Skewness 

0.9074*** 

(0.0180) 

0.9057*** 

(0.0181) 

Shape 
7.9293*** 

(0.9589) 

7.8784*** 

(0.9491) 
Shape 

11.5163*** 

(1.8641) 

11.5369*** 

(1.8751) 

Observations 4779 4779 Observations 4794 4794 

Log-likelihood 15675.82 15690.57 
Log-

likelihood 
14489.05 14489.44 

Note:  *p0.1;   **p < 0.05;   ***p < 0.001. 

As more adjustment we make to the GARCH model, our model gets more reliable and 

makes prediction that fits well with the observed returns. Next, we evaluate the accuracy of 

employed GARCH model specifically for its mean and variance distribution. For the mean, 

we use the equation (7) where the prediction error is defined as the difference between actual 

and predicted return. We achieve a good fit on our analysis when the mean prediction error 

is small. 

Conclusions 

We attempted to express the potential capacity of a dynamic GARCH models in the field 

of practical financial econometrics. We inspected a large amount of literature on volatility 

modelling and their practical relevance in portfolio risk measurement and management. 

The implication of our discussion is GARCH models incorporate with VaR offers a 

comprehensive parsimonious framework for successfully measuring the downside risks 

of portfolio returns and GARCH models itself for successfully modelling the dynamic 

features of portfolio returns respectively for S&P 500 and DAX. 

By applying standardized returns method, we solve the issue of normal distribution in 

portfolio returns that enabled us to observe different volatility transmission in different 

periods. Moreover, we employed a high frequency of return data for both indices and thus 

enabled us more accurate risk assessment for practical volatility forecast. 

Our findings from this analysis suggests that investors for S&P 500 only required higher 
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returns around 2008 during the financial crises, while those for DAX required more 

compensation not only in 2008 but also from 2000 to 2003 and  from 2015 to 2016 in order 

to cover losses as shown in Figure 8. 

Moreover, Table 3 clearly indicates that DAX returns show statistical significant coefficient 

for AR(1) GJR-GARCH, which means stock prices of DAX does not really depend on its 

past prices. However, we observe a strong AR(1) for S&P 500 returns implying stock prices 

of S&P 500 strongly requires the lag 1 auto regression . 

Finally, after discussing many implications of portfolio risk management in volatility 

estimation, we observed a better parameter coefficients with ARMA(1,1) GJR-GARCH. 

Our estimated volatility forecast with this model presented a good fit to the actual 

volatility series of both indices as proved in the results of this article. 
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